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Abstract. A coupled channel model is used to study the nature of the f0(980) resonance. It is shown that
the existence of two poles close to KK̄ threshold, as found in many data fits and confirmed here, can be
reconciled with the KK̄ molecular origin of the f0(980). Due to a strong coupling between channels the
number of the S-matrix poles close to the physical region in the physical case exceeds the number of bare
states introduced in the model.

1 Introduction

The channel with the vacuum quantum numbers JPCIG

= 0++0+ has several resonances [1] the structure of which
has been under discussion for a long time. Recently this
problem attracted new attention after a candidate for the
scalar glueball was found at LEAR [2,3]. A characteris-
tic feature of the JPCIG = 0++0+ channel is that the
mixing between different states is strong, so that a con-
nection between the observed resonances and bare states,
like quarkonia or glueballs, is nontrivial [4,5].

In this paper we shall discuss a part of this problem
concerned mainly with the f0(980) resonance. This res-
onance (the present average values [1] for the mass and
width are: mf0 = 974.1 ± 2.5 MeV, Γf0 = 47 ± 9 MeV)
has a long history of experimental and theoretical stud-
ies. The small width and proximity to the KK̄ threshold
are among its interesting features, and different explana-
tions have been suggested. We list the most prominent
ones. A cryptoexotic qqq̄q̄ state was considered in the
quark bag model [6]. A KK̄ molecular state was found
in the potential quark model [7–9]. A complicated in-
terplay between S-matrix poles and the KK̄ threshold
structure was shown in [10] to play an important role and
obscure conventional simple correspondence between the
poles and resonances. The phenomenological analysis in
the K-matrix framework favoured for a long time a con-
ventional Breight-Wigner resonance interpretation (con-
trary to a KK̄ state) [11–14]. A quasi-bound KK̄ state
was found in the coupled channel models [15–17] and in
the meson exchange interaction model [18,19]. An exotic
vacuum scalar state was considered in [20]. A mixture of a
qq̄ state and a scalaron weakly coupled to the KK̄ channel
was discussed in [21], and a state strongly coupled to the
ss̄ and KK̄ channels near the KK̄ threshold was found
in the unitarized quark model [4,22]. A state dominated
by the KK̄ channel was found in a coupled-channel model
derived from the lowest order chiral Lagrangian [23]. For

a more complete list of references dealing with the nature
of the f0(980) see [4,9,12,24].

In this paper we shall show that some of the apparently
contradicting interpretations of the f0(980) resonance rep-
resent in fact only a part of the multifaceted picture of
this state resulting from strong coupling between different
channels. In particular, we revise the conventional claim
about the connection between the number of poles near
the KK̄ threshold and the nature of the state (KK̄ molec-
ular state vs. coupled channel resonance, see the discussion
in [25] and references therein).

Our approach is based on a coupled channel model for
the ππ and KK̄ systems. Despite of its simplicity it sat-
isfies the minimal requirements which allow an adequate
phenomenological description of the ππ scattering ampli-
tudes in the region of the KK̄ threshold. Since the solu-
tions are available in analytic form, the trajectories of the
S-matrix singularities for coupling constants varied in dif-
ferent ways can be followed explicitly shedding some light
on the physical nature of the narrow f0(980) resonance. A
transparent comparison can be made to similar and alter-
native models in the literature. The model is introduced
in Sect. 2, and its parameters are determined from a fit
of the ππ scattering phases. The analytic structure of the
scattering amplitudes is presented as a function of the pa-
rameters in Sect. 3. In Sect. 4 the physical properties of
the solutions are discussed and a comparison is made to
other approaches in the literature, in particular the va-
lidity of the models relating the f0(980) resonance to a
weakly bound KK̄ state is elucidated. The details of the
formalism are collected in the Appendix.

2 The ππ − KK̄ coupled channel model

In order to describe the interaction in the ππ−KK̄ system,
we introduce a simple model with three channels (here and
below we consider the partial wave J = 0++ IG = 0+).
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Channels 1 and 2 correspond to the ππ and KK̄ systems.
Channel 3 consists of a bound state in the |qq̄〉 channel,
and the rest of the dynamics in this channel is ignored.

The T -matrix, as a function of the invariant mass
squared s, is defined by the Lippmann-Schwinger equa-
tion

T (s) = V + V G0(s)T (1)

where G0(s) is the free Green function

G0(s) =

(
G0

1(s) 0 0
0 G0

2(s) 0
0 0 G0

3(s)

)
(2)

The free Green functions for the ππ, KK̄, and qq̄ channels
have the form

G0
1(s) =

2
π

∫ ∞

0

|k1〉〈k1|
s/4 − (m2

π + k2
1)

k2
1dk1 (3)

G0
2(s) =

2
π

∫ ∞

0

|k2〉〈k2|
s/4 − (m2

K + k2
2)

k2
2dk2 (4)

G0
3(s) =

|qq̄〉〈qq̄|
s − M2

r

(5)

Here |k1〉 and |k2〉 denote the free ππ and KK̄ states with
relative momenta k1 and k2, respectively. The state |qq̄〉
in channel 3 has a bare mass Mr.

To describe the interaction we use the following poten-
tial matrix:

V =

(
Vππ Vππ−KK̄ Vππ−qq̄

VKK̄−ππ VKK̄ VKK̄−qq̄

Vqq̄−ππ Vqq̄−KK̄ 0

)
(6)

We assume that the diagonal interaction VKK̄ pro-
duces a bound state in the KK̄ channel in the absence
of any coupling to the other channels in our model, thus
simulating a ‘molecular origin’ of the f0(980) resonance1.
A strong coupling of this state to the ππ channel is induced
by the interaction Vππ−KK̄ = V +

KK̄−ππ
. The ππ channel

is assumed to have a strong coupling to the qq̄ resonance
as well. The qq̄ state is also directly coupled to the KK̄
channel by the interaction VKK̄−qq̄ = V +

qq̄−KK̄
. The diag-

onal potential Vππ is used to provide a correct description
of the ππ scattering at low energies (see below).

The interaction potentials are taken in separable
form:2

V =

(
g11|1〉〈1| g12|1〉〈2| g13|1〉〈qq̄|
g12|2〉〈1| g22|2〉〈2| g23|2〉〈qq̄|
g13|qq̄〉〈1| g23|qq̄〉〈2| 0

)
(7)

We shall use the following form factors in channel 1 and
2:

〈k|1〉 = ξ1(k) =
µ3/2

k2 + µ2
1

(8)

〈k|2〉 = ξ2(k) =
µ3/2

k2 + µ2
2

(9)

1 The effective interaction in the KK̄ channel was demon-
strated to be attractive in various quark models [4,7,8]

2 For our purpose the first rank is sufficient to generate the
singularities needed

where the parameters µ1 and µ2 describe the interaction
range in the ππ and KK̄ channels.

With this choice of the form factors the matrix ele-
ments of the Green functions are

〈n|G0
n(s)|n〉 =

µ2
n

2(kn(s) + iµn)2
, n = 1, 2 (10)

where kn(s) is the relative momentum in the channel n:

k1(s) =
√

s/4 − m2
π (11)

k2(s) =
√

s/4 − m2
K . (12)

For our model the analytical solution for the T -matrix
can be easily obtained. The ππ scattering amplitude
fππ(s) has the form:

fππ(s) = −〈k1|T (s)|k1〉 = − λ(s)ξ(k1)2

1 − λ(s)〈ξ|G0
1(s)|ξ〉

(13)

where

λ(s) = g11 + g2
13G3(s)

+
(g12 + g13g23G3(s))2〈2|G0

2(k2)|2〉
1 − (g22 + g2

23G3(s))〈2|G0
2(k2)|2〉 (14)

G3(s) =
1

s − M2
r

(15)

The first term on the r.h.s. of (14) results from the diag-
onal interaction in the ππ channel, the second and third
terms correspond to the effective interactions induced in
the ππ channel by the couplings to the qq̄ and KK̄ chan-
nels. We use the coupling constant g11 to satisfy the Adler
condition [26], that leads to the vanishing partial wave am-
plitude at s = m2

π/2, by imposing the following constraint

λ(m2
π/2) = 0 . (16)

The connection between the partial wave S-matrix and
the scattering amplitude fππ is given by

SI=0
J=0(s) = η0

0(s)e2iδ0
0(s) = 1 + 2ik1fππ(s) (17)

where δ0
0(s) is the scattering phase and η0

0(s) is the elas-
ticity parameter.

Considering the coupling constants g22, g12, g13, g13,
the interaction ranges µ1, µ2 and the position of the bare
qq̄ resonance Mr as free parameters, we fitted the ππ
scattering amplitude3 from [27–29] in the energy range
2mπ <

√
s < 1.4 GeV. In fitting the ππ scattering data we

found a significant correlation between the model parame-
ters, in particular, between the coupling constants and the
interaction ranges, so that it was possible to impose some
extra constraints preserving a good quality of the fit. The
fit 1 (see Fig. 1 and Table 1) was done assuming equal
interaction ranges (µ1 = µ2) and switching off the direct
coupling between the qq̄ and KK̄ channels (g23 = 0). A

3 For a recent discussion of the ππ scattering amplitude see
[17,30]
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Fig. 1. The scattering phase δ0
0 and

the elasticity parameter η0
0 for the S-

wave ππ scattering vs.
√

s. The curves
are our model (the dashed line – fit 1,
the solid line – fit 2), the experimental
points are from [27–29]

Table 1. The model parameters obtained from the fit. The g11 value is calculated
using (16), mπ = 0.1396 GeV, mK = 0.4937 GeV

fit g22 g12 g13 g23 µ1 µ2 Mr g11

GeV GeV GeV GeV GeV
1a -5.5332 3.9456 0.69642 0 0.37909 0.37909 1.0916 4.7499
2b -3.2421 1.9814 0.69358 0.06828 0.3730 0.89975 1.0925 4.6416
a The fit of the δ0

0 using g23 = 0, µ1 = µ2
b Including the fit of the η0

0 and the KK̄ scattering data, µ1 is fixed

good fit of the ππ scattering data does not automatically
lead to a good fit of the KK̄ scattering (see Fig. 2). How-
ever fitting the ππ and KK̄ scattering data together we
get a fair description of the KK̄ phase shift as well (see
the fit 2 in Figs. 1,2 and Table 1). The calculated S-wave
KK̄ scattering phase shown in Fig. 2 has an energy be-
haviour typical for the presence of a weakly bound state.
The two fits shown represent typical results obtained with
our model. Because of a significant uncertainty in the data
near the KK̄ threshold4 and the importance of higher res-
onances which are not considered here we shall use both
sets of the model parameters in the further analysis, the
fit 2, however, appears to be preferable.

3 The poles of the S-matrix

3.1 The analytical structure of the S-matrix

The Riemann surface of the scattering amplitude for the
two channel problem has four sheets due to the kinemati-
cal cuts starting at the ππ and KK̄ thresholds according
to (11,12), as shown in Fig. 3. The sheets of the complex s-
plane are distinguished by the signs of the imaginary parts
of the channel momenta k1 and k2, with the standard no-
tation given in Table 2. The physical scattering region
corresponds to the upper side of the cut going along the
real s axis on the sheet I. If there exist true bound states in
both channels, they occur on the sheet I on the real s-axis
below all the thresholds. The sheet II accommodates the

4 For a discussion of constraining the ππ − KK̄ scattering
amplitude by extending the set of experimental data, see [11–
13,19]
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Fig. 3. The Riemann surface of the scattering amplitude

states which appear as resonances in the channel 1 (ππ)
and (quasi) bound states in channel 2 (KK̄). The sheet
III corresponds to resonances in both channels.

Using our model we found the position of the poles
of the S-matrix in the complex s-plane, the result be-
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Table 2. The sheets of the Riemann surface of the scattering
amplitude in the s-plane

Sheet Im k1 Im k2

I + +
II − +
III − −
IV + −

Table 3. The resonance poles of the S-matrix in the s-plane
(GeV2)

Pole Sheet fit 1 fit 2
A II 0.979 − i0.065 1.015 − i0.054
B II 1.653 − i1.163 1.521 − i1.092
C II 0.135 − i0.180 0.131 − i0.178
D III 1.007 − i0.158 1.072 − i0.193
E III 1.562 − i1.773 1.207 − i1.696

ing shown in Table 3. There are two poles, sII
A and sIII

D ,
very close to the KK̄ threshold. Another pair of poles,
sII

B and sIII
E , corresponds to a broad resonance above the

KK̄ threshold, and the pole sII
C corresponds to a broad

structure associated with the ππ threshold. The physics
of these poles will be discussed in detail in Sect. 3.2. The
position of the resonance poles depends on the coupling
constants, and this distinguishes them from the fixed poles
originating from the singularities of the form factors (9).
The latter are located at k1 = ±iµ1 and k2 = ±iµ2, their
proximity to the physical region being determined by the
range of the interaction. In our model these fixed poles
approximate the potential singularities which correspond
to the left hand cut in a more general case.

3.2 Trajectories of the resonance poles

To understand the origin and the nature of the resonance
poles found in our model we investigate how these poles
move in the complex s-plane when the model parame-
ters are varied between the physical case and the limit of
vanishing couplings between the ππ, the KK̄, and the qq̄
channels: g12 = g13 = 0. In this case the diagonal inter-
action in the KK̄ channel with the physical strength of
the coupling g22 produces a bound state close to the KK̄
threshold with mass mKK̄ = 0.85 GeV (for the fit 2 the
coupling with the qq̄ channel contributes 8 MeV to the
binding energy). The qq̄ state in the absence of coupling
to the open channels is characterized by the mass Mr and
zero width.

The trajectories of the S-matrix poles were calculated
for the coupling constants g12 and g13 varied between zero
and the physical values given in Table 1:

g12 → x1/2g12 ,

g13 → x1/2g13 , 0 ≤ x ≤ 1 (18)

Figures 4 and 5 display the trajectories plotted in the com-
plex planes of the channel momenta k1 and k2. The four

sheets of the complex s-plane correspond to two sheets of
the complex momenta planes. Figure 4 shows the k1 plane
that contains the sheets I and II of the s-plane (the second
sheet of the k1 plane, which is not shown here, is reached
across the cut going from the KK̄ threshold to infinity).
All four sheets of the s-plain can be displayed on a single
sheet of the k2 plane with the kinematical cuts going from
the ππ thresholds to infinity, as shown in Fig. 5. The sec-
ond sheet in the k2 plane is a mirror copy (with respect
to the imaginary k2 axis) of the plotted one due to the
symmetry properties of the S-matrix [36].

There are three poles on the sheet II. The pole tra-
jectories for the fits 1 and 2 shown in Fig. 4 demonstrate
two different cases of interplay between the original KK̄
bound state and the qq̄ resonance. For the fit 1, the pole
sII

A originates from the bound KK̄ state and develops an
imaginary part due to the coupling to the ππ channel, see
the trajectory (b − SII

A ) in Figs. 4a,5a. This pole remains,
however, close to the KK̄ threshold and does not go far
away from the real k1 axis. This occurs because of its in-
terplay with the pole sII

B which belongs to the trajectory
(r − sII

B ) originating from the qq̄ state. At small nonzero
couplings (18) these two poles develop comparable imag-
inary parts. With increasing coupling the two poles first
get closer but then they start to move away from each
other. As a result the pole sII

B gets a large imaginary part
while the pole sII

A turns back to the real axis. This kind
of pole motion is one of the generic possibilities occurring
in the problem of two states coupled via a continuum as
discussed in the Appendix.

The fit 2 corresponds to the second generic possibility
when the pole originating from the qq̄ resonance is at-
tracted to the KK̄ threshold producing the narrow state
(see the trajectory (r−sII

A ) on Figs. 4b,5b) while the pole
originating from the KK̄ bound state develops a large
width due to the strong coupling to the ππ channel. In
both cases the strong attractive interaction in the KK̄
channel is essential for the appearance of the pole on the
sheet II close to the KK̄ threshold.

In both cases the pole sII
C is generated dynamically

by the effective attractive interaction in the ππ channel
resulting from the coupling to the closed channels. The
dynamical nature of this pole is seen from the fact that
its trajectory (d−SII

C ) begins at the singularity of the form
factor ξ(k1) at k1 = −iµ1. This very broad resonance is
responsible for the strongly attractive ππ scattering phase
between the ππ and KK̄ thresholds and can be associated
with the σ meson found in other models [4,16,17,19,22,23,
37–39]. The mass and the width of the σ meson is obtained
using the pole position, sII

C = (Mσ−iΓσ/2)2, the fits 1 and
2 give similar results: Mσ ≈ 0.42 GeV and Γσ ≈ 0.42 GeV.

The sheet III contains two pole trajectories showing a
similar behaviour in both cases. The qq̄ state, being a gen-
uine coupled channel resonance, corresponds to two poles
(in the zero coupling limit they are symmetric with respect
to the imaginary k2 axis), see Fig. 5. The pole on the sheet
II was considered above. The pole on the sheet III moves
along the trajectory (r−sIII

D ) closer to the KK̄ threshold
with increasing coupling to the open channels. For the fit
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Fig. 4. The trajectories of the poles in
the complex k1 plane for the KK̄ − ππ
and qq̄ − ππ couplings increasing from
x = 0 (◦) to the physical values x =
1 (•). The labels indicate the original
positions of the bound state (b), the qq̄
resonance (r), and the dynamical pole
(d). The dots on the trajectories mark
the increase of x in steps of 0.1. Fit 1
is shown in Fig. a, fit 2 in Fig. b
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and qq̄ − ππ couplings increasing from
0 (◦) to the physical values (•). Fit 1 is
shown in a, fit 2 in b. The labels are as
in Fig. 4

1, at the physical values of the coupling constants the pole
sIII

D positions itself seemingly as a partner of the pole sII
A

with small imaginary part, while, by its origin, the pole
sIII

D is a counterpart of the pole sII
B , as is clearly seen in

the weak coupling regime. For the fit 2, the poles moving
along the trajectories originating from the initial qq̄ poles,
(r − sII

A ) and (r − sIII
D ), look like counterparts for all val-

ues of the channel coupling constant between zero and the
physical value. The attractive KK̄ interaction is essential
for keeping these poles close to the KK̄ threshold, which
again speaks for the KK̄ nature of the f0(980). This re-
sult illustrates that on the basis of the physical location
of the poles alone the nature of the resonances in strong
coupling limit cannot be determined reliably. The study
of the trajectories in a model can be helpful for uncovering
the underlying dynamics.

The pole sIII
E on the sheet III has a very large imagi-

nary part, thus it looks like a counterpart of the pole sII
B

on the sheet II, as expected for the broad qq̄ state strongly
coupled to the open channels. However, this naive inter-
pretation cannot be correct because the pole originating
from the qq̄ state on the sheet III was found to be at-
tracted to the KK̄ threshold and has a small width. Fig-
ure 5 shows that the pole sIII

E has a dynamical origin:
the corresponding trajectory emerges from the dynamical

singularity of the effective attractive potential in the ππ
channel (k1 = −iµ1). This result holds for both fits.

The existence of nearby resonance poles of the
S-matrix which are ’far away’ in the limit of zero chan-
nel coupling is a characteristic feature of coupled channel
models with potential (left hand) singularities. That is
why the coupled channel model can provide a picture of
the pole trajectories different from the standard K-matrix
parametrization where no poles are generated dynami-
cally, such that all poles must be introduced explicitly.

The interaction between the KK̄ bound state and the
qq̄ state is important for producing the narrow f0(980)
resonance. This can be illustrated by comparing the pole
trajectories in Fig. 4 with the ones calculated for the cases
when either the KK̄ or the qq̄ channel is switched off, see
Fig. 6. If the qq̄ state is coupled only to the ππ channel,
then at the physical strength of the coupling g13 the reso-
nance originating from the qq̄ state has a width of about
330 MeV, sr = (0.96 − i0.33) GeV2. If the KK̄ channel
is coupled only to the ππ channel, then the KK̄ state at
the physical strength of the coupling g12 has a width of
about 300 MeV, sb = (0.39 − i0.19) GeV2. In both cases
an additional very broad resonance with a width of about
1 GeV arises from the dynamical singularity as a result of
the strong coupling between the channels.
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4 Discussion

In this section we discuss how our results are related to
previous studies in the literature. In our model the final
configuration representing the data has a pair of poles
close to the KK̄ threshold. The pole sII

A on sheet II cor-
responds to a strong interplay between the original KK̄
bound state and the qq̄ resonance, the attractive KK̄ in-
teraction being important for its proximity to the thresh-
old. Both generic possibilities of the interaction between
two poles (see Appendix A) were found to be consistent
with the ππ scattering data. When our model is con-
strained by the ππ − KK̄ scattering data, the rearrange-
ment situation is favoured (fit 2): with increasing coupling
to the ππ channel the pole originating from KK̄ (molec-
ular) bound state nearly collides with the one originating
from the qq̄ state and then it is repelled and develops a
large imaginary part while the pole originating from the
qq̄ state is attracted to the KK̄ threshold. However the
alternative situation (fit 1), when the pole sII

A belongs to
the trajectory originating from the KK̄ bound state, can
be realized with relatively small variation of the model
parameters and thus is as well a viable solution.

Next in importance by distance to the physical region
is the pole sIII

D on sheet III, which arises from the qq̄ res-
onance strongly coupled to the ππ and KK̄ channels. The
remote pole sII

B on the sheet II has a dynamical counter-
part sIII

E with large width, the latter is created by the
interaction between the qq̄ state and the ππ channel on
sheet III.

This configuration of the poles is similar to the result
found for the fits in the K-matrix formalism [11,12]. The
existence of two poles close to the KK̄ threshold was of-
ten interpreted as an evidence against the KK̄ molecular
state origin of the f0(980) resonance. While in the limit
of weak coupling to the ππ channel the KK̄ bound state
is clearly described by a single pole, the situation can be
very different in the case of strong coupling as our model
explicitly demonstrates.

It was found in [12] that the amplitude in the KK̄
molecular model of the f0(980) [9] has only one pole near
the KK̄ threshold. This, however, does not mean that
any other model with the KK̄ weakly bound state has
the same feature, and our model is just a counterexample.
As demonstrated in [12], the fits, which allow two poles

Table 4. The of the S-matrix in the
√

s-plane (GeV) corre-
sponding to the f0(980) resonance

Ref. Mf0 − iΓf0/2 Mf0 − iΓf0/2
(sheet II) (sheet III)

fit 1 0.990 − i0.033 1.007 − i0.079
fit 2 1.008 − i0.027 1.039 − i0.093
[2] 0.996 − i0.056 0.953 − i0.055
[4] 1.006 − i0.017
[11]a 1.001 − i0.026 0.985 − i0.020

0.988 − i0.000
[12]b 0.988 − i0.024 0.978 − i0.028
[12]c 0.972 − i0.016
[13] 1.008 − i0.043 0.957 − i0.041
[15] 0.993 − i0.023
[16] 0.973 − i0.029
[17]d 0.989 − i0.031

0.992 − i0.034
[19] 1.015 − i0.015
[21] 0.987 − i0.040 0.967 − i0.069
[38] 0.988 − i0.023 0.797 − i0.185
[40] 0.984 − i0.039 0.986 − i0.102
[41] 1.015 − i0.043
a The three-pole fit
b The favoured two-pole fit
c Using the model from [9]
d Fits to the “down-flat” and “up-flat” data

near the KK̄ threshold, describe the data much better
than an one-pole fit. Because in our model the number of
the resonance poles is not limited by the number of the
bare states, the second pole needed for the best fit to the
data is generated dynamically and the overall picture is
similar to the favoured two-pole solution in [12].

The exact position of the poles corresponding to the
f0(980) resonance is known to be sensitive to the selection
of data used in the fit. Our results concerning the mass and
the width of the f0(980) are compared with some recent
results in Table 4 (for detailed description of input data
we refer to the original papers).

The dynamical description of the f0(980) by two poles
in our model is similar to the result of the unitarized quark
model [4] where the strong coupling between the bare
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Fig. 7. The probability density for the
qq̄ state embedded in the continuum.
The solid line corresponds to the phys-
ical parameters, the dashed line is for
x = 0.2 in (18): a fit 1, b fit 2

Table 5. The poles of the S-matrix in the
√

s-plane (GeV)
corresponding to the σ resonance

Ref. Mσ − iΓσ/2 (sheet II)
fit 1 0.424 − i0.213
fit 2 0.420 − i0.212
[4,22] 0.47 − i0.25
[16] 0.506 − i0.247
[17]a 0.518 − i0.261

0.562 − i0.233
[19] 0.387 − i0.305
[23] 0.470 − i0.179
[37] 0.460 − i0.338
[38] 0.370 − i0.356
[39] 0.42 − i0.37

a Fits to the “down-flat” and “up-flat” data

quark-antiquark states and the two meson channels was
found to produce additional poles. Our model is different
from [4] concerning the analytical structure of the tran-
sition form-factors, see (9). In our case the form-factors
have poles whose positions are related to the range of in-
teraction. In the model [4] the form-factors are taken in
the oscillator form and have an essential singularity at in-
finity. The shape of the form factors does not seem to be
crucial for the quality of fitting the data, but our choice
has the advantage of placing the leading dynamical singu-
larities at a finite distance from the thresholds. As both
models demonstrate, the interplay between the bare states
and the dynamical singularities is important for the cor-
rect phenomenological description of the resonances in the
scalar-isoscalar channel. An essential feature is that the
number of resonance poles can exceed the number of the
bare states.

The σ meson is generated dynamically as a broad cou-
pled channel resonance and hence corresponds to a smooth
attractive background phase. The parameters of this reso-
nance are expected to be model dependent since the very
existence of a broad resonance cannot be proven on the
basis of data alone. Our results for the σ are compared
with the values from the literature in Table 5.

There is a broad resonance above the KK̄ threshold,
which is related to the qq̄ state strongly coupled with the
ππ and KK̄ channels, as discussed above. The mass and
the width calculated from the position of the poles sII

B
abd sIII

E are (MB − iΓB/2) = (1.36 − i0.43) GeV and
(ME − iΓE/2) = (1.40 − i0.63) GeV (the fit 1). This res-
onance is similar to that of the K-matrix analysis [12]
where a very broad state at about 1 GeV of width around
0.7 GeV was found. In our model this resonance is needed
to describe the rise of the ππ scattering phase above the
KK̄ threshold. It can be considered as an approximation
for the higher resonances, in particular, the f0(1300), and
our results for the remote poles sII

D and sIII
E should be

considered as an estimate rather than the parameters of
real physical structures (for the discussion of this energy
region see [3–5,41,17,43] and references therein).

A qualitative description of this mass range would re-
quire accounting for additional higher resonances, see [5,
40,41]. We do not attempt it here, however, we can use
our model to demonstrate how the qq̄ state dissolves into
the continuum. This problem is especially interesting be-
cause the channel coupling is strong, such that the poles
corresponding to the very broad resonance and the bare
state belong to different trajectories (compare the sIII

E and
the sIII

D in Fig. 5 in both fits). Our approach is based on
the probability sum rule for a resonance embedded into a
continuum [42]. Using the full Green function

G(s) = G0(s)(1 + T (s)G0(s)) (19)

and projecting the completeness relation in channel space
onto the qq̄ channel one gets∫ ∞

4m2
π

w(s)ds = 〈qq̄|qq̄〉 = 1 , (20)

where

w(s) =
1

2πi
(G3(s − iε) − G3(s + iε)) , (21)

G3(s) = 〈qq̄|G(s)|qq̄〉 =
1

s − M2
r − Π(s)

, (22)

and Π(s) is the mass operator of the qq̄ state:
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Π(s) = (23)
4(g2

13G0
1(s)+g2

23G0
2(s)+(2g12g13g23−g2

13g22−g2
23g11)G0

1(s)G
0
2(s))

1−g11G0
1(s)−g22G0

2(s)+(g11g22−g2
12)G

0
1(s)G

0
2(s)

.

According to (20) the function w(s) determines the
probability density for the qq̄ component in the scattering
states within the interval (s, s+ds), as shown in Fig. 7. In
the case of weak coupling the probability density is well
localized near the position of the bare qq̄ state. For the
physical case we find a broad peak centered slightly above
the KK̄ threshold, so that there is a significant overlap
of the w(s) distribution with the f0(980) resonance. This
down shift with respect to the position of the original qq̄
state is due to the strong attraction of the sIII

D pole to-
wards the KK̄ threshold. The position and the width of
the w(s) distribution indicates that an essential contribu-
tion to the saturation of the sum rule (20) comes from
the pole sIII

D , while the narrow structure associated with
the pole sII

A alone plays a minor role. Thus out of the two
poles related to the narrow f0(980) state only the pole on
sheet III has a large qq̄ component and the pole on sheet
II has mainly KK̄ nature.

5 Conclusion

We have re-examined the resonance structures in the
JPCIG = 0++0+ partial wave of ππ scattering below 1
GeV, including the f0(980) and σ resonances on the basis
of an exactly solvable coupled channel model. The model
has the following features: a separable diagonal KK̄ po-
tential producing a weakly bound state, a separable tran-
sition potential Vππ−KK̄ (representing K∗-exchange, e.g.)
which couples the ππ and KK̄ channels, and a broad reso-
nance in the qq̄ channel which represents background and
is coupled to the ππ and KK̄ channels. Tuning the model
parameters the experimental energy dependence of the
ππ S-wave scattering phase δI=0

0 (s) is reproduced accu-
rately. The interpretation of the singularities is elucidated
by tracing the trajectories of the S-matrix poles as a func-
tion of the strength of the channel couplings. Two generic
cases are represented by fit 1 and fit 2.

In our model the f0(980) resonance corresponds to two
S-matrix poles close to the KK̄ threshold. The pole on
sheet II (sII

A ) corresponds to the interplay between the
original KK̄ (molecular) bound state and the qq̄ state due
to their coupling via the ππ channel. This pole has many
features typical for the KK̄ bound state in the absence
of the coupling to the ππ channel. The model parameters
consistent with the data allow two possibilities when the
coupling with the ππ channel is switched on: the pole sII

A
originates either directly from the KK̄ bound state (fit 1)
or through the rearrangement from the qq̄ state colliding
with the KK̄ state (fit 2). The second pole on sheet III
(sIII

D ) arises from the qq̄ resonance coupled to the ππ and
KK̄ channels. It has a large qq̄ component, but its posi-
tion close to the KK̄ threshold is due to the attractive
interaction in the KK̄ channel. There is no contradiction
between the presence of two poles close to KK̄ threshold
and the molecular origin of the f0(980) resonance.

i j

Fig. 8. The system of two states (i, j = 1, 2) coupled with the
continuum channel

The remote poles on sheet II (sII
B ) and sheet III (sIII

E )
correspond to a smooth background phase, the latter orig-
inates from the dynamical singularity describing the cou-
pling of the qq̄ resonance to the ππ channel. The σ meson
is generated dynamically by the strong coupling qq̄ ↔ ππ
resulting in an effective attractive interaction in the ππ
channel below the qq̄ state (sII

C ). The appearance of dy-
namical coupled channel poles is a crucial feature; in the
physical case the number of poles close to the physical
region exceeds the number of bare states in the model.

Overall the resulting configuration is similar to the re-
sults from the phenomenological K-matrix analysis: two
poles close to the KK̄ threshold. Our model shows that
the interpretation of the scattering data is entirely consis-
tent with a KK̄ state picture for the f0 resonance, which is
thus not in conflict with the (phenomenological) require-
ment of having two poles (not one) near the KK̄ thresh-
old.
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the ππ − KK̄ scattering data.

Appendix A. Two states coupled
via a continuum

Contrary to direct coupling between two states which is
well known to result in their repulsion, a coupling of two
states via a continuum channel can induce an effective at-
traction. This problem has been treated in the literature
(see, for example, [44]), so here we give only a brief sum-
mary for the benefit of the reader.

We consider two states with energies E0
1 and E0

2 , which
are coupled to the continuum channel. This coupling in-
duces an effective interaction described by the mass oper-
ators(

V11 V12
V21 V22

)
=
(

g2
1〈1|G(E)|1〉 g1g2〈1|G(E)|2〉

g1g2〈2|G(E)|1〉 g2
2〈2|G(E)|2〉

)
(24)

where gi is the coupling between the state i and the con-
tinuum, |i〉 is the corresponding vertex, and G(E) is the
Green function of the continuum channel. The mass op-
erators Vij are energy dependent: in particular, they have
kinematical cuts starting from the continuum threshold.
When the states 1 and 2 are coupled to the open chan-
nel, they are not the eigenstates of the full Hamiltonian,
but become resonances located on the second sheet, where
ImVij ≤ 0, and they can be identified with the poles of
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Fig. 9. The poles of the Green function in the complex energy
plane for the system of two states coupled via a continuum. The
trajectories show the motion of the poles as function of Γ1 for
three different cases: (a) Γ2 = 0.8|E0

1 −E0
2 |, (b) Γ2 = |E0

1 −E0
2 |,

(c) Γ2 = 1.2|E0
1 − E0

2 |

the Green function. Their position is determined by the
equation

det
(

E − E0
1 − V11 V12

V21 E − E0
2 − V22

)
= 0 (25)

For the sake of simplicity, we assume the states 1 and
2 to be far above the threshold and neglect the energy
dependence of the mass operators. Furthermore we con-
sider only the imaginary parts of the mass operators5
and use the following parametrization: V11 = −iΓ1/2,
V12 = V21 = −i

√
Γ1Γ2/2, V22 = −iΓ2/2. Equation (25)

is then reduced to

det
(

E − E0
1 − iΓ1/2 −i

√
Γ1Γ2/2

−i
√

Γ1Γ2/2 E − E0
2 − iΓ2/2

)
= 0 (26)

which has the resonance pole solutions:

E± =
(E0

1 + E0
2) − i(Γ1 + Γ2)/2

2

±1
2

√
(E0

1 − E0
2 − iΓ1 + iΓ2)2 − Γ1Γ2 (27)

Considering the resonance positions as functions of the in-
dividual couplings (Γ1 ∼ g2

1 , Γ2 ∼ g2
2) we find the different

types of solutions shown in Fig. 9. The trajectories plotted
correspond to the solutions E± for variable width Γ1 and
fixed values of Γ2 and the initial positions E0

1 and E0
2 . As

the width Γ1 increases starting from zero, the two poles
first attract each other, but then the attraction turns into
repulsion. There are three different types of solutions for
the trajectories E±(Γ1), which correspond to the following
cases:

(a) Γ2 < |E0
1 − E0

2 |
(b) Γ2 = |E0

1 − E0
2 | (28)

(c) Γ2 > |E0
1 − E0

2 |
5 The real parts lead to the well known shifts due to the

diagonal interactions and to the mutual repulsion due to the
nondiagonal interactions

In the case (a) the trajectory corresponding to the solution
E−(Γ1) remains bounded, as Γ1 goes to infinity, while in
the case (c) the bounded trajectory corresponds to the
solution E+(Γ1). In the case (b) the trajectories collide in
the complex plane at Γ1 = Γ2. In all cases, infinite growth
of Γ1 does not make both states infinitely broad: there is
always a solution with width smaller than |E0

1 − E0
2 |.
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